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TIME DOMAIN FREQUENCY STABILITY 
CALCULATED FROM THE FREQUENCY DOMAIN 

DES CRIPT ION: 
Use of the SIGINT Software Package to 

Calculate Time Domain Frequency Stability From 
the Frequency Domain 

F. L. Walls John Gary Abbie O’Gallagher 
Roland Sweet Linda Sweet 

National Institute of Standards and Technology 
Boulder, Colorado 80303-3328 

We describe the use of SIGINT, an interactive software package devel- 
oped by the National Institute of Standards and Technology, which facil- 
itates the calculation of time domain frequency stability from frequency 
domain data as a function of measuring time in terms of either the Al- 
lan variance, O ; ( T ) ;  the modified Allan variance, modai(.r); or a , ( ~ )  = 
(r/fi)modaJT). Except for the graphic output, the code is written in 
standard FORTRAN 77 and runs on AT compatible computers that have 
a math co-processor. It also runs on many other systems; however, calls to 
an available graphics library will need to be substituted for those that are 
included in this version. The program uses either a user defined function 
for the input noise or default functions that describe the noise types com- 
monly found in oscillators, amplifiers, frequency multipliers, frequency 
dividers, and general signal processing equipment including up to four 
coherent bright lines in the noise spectra. These default functions make 
it simple to analyze the time domain frequency stability as a function of 
measuring bandwidth using realistic first-, second-, or third-order low-pass 
filters or the simplified infinitely sharp cutoff parameter fh. The default 
functions are also set up to examine the effect of various servo parameters 
on the performance of a frequency source locked to  a frequency reference. 

Key words: Allan variance; frequency lock loop analysis; modified Allan 
variance; phase lock loop analysis; spectral density of frequency stability; 
time domain frequency stability. 
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1 Introduction 

SIGINT is an interactive software package designed to facilitate the calculation of time 
domain frequency stability from data in the frequency domain. The Allan variance 
(two-sample variance), ui(7); the modified Allan variance, modai(r) ;  or a=(.) = 
(T/&) modu,(-r) can be calculated as functions of measurement time. Except for 
the graphic output, the code is written in standard FORTRAN 77 to run on AT and 
compatibles that have a math co-processor (see $4 for details on portability). The 
actual output of the software is the square root of the variance. The equations are 
P, 2 , 3 , 4 1  

nr0 
ci(n70) = (-)modg,(nTO) , 

J3 
where the measurement time is given by nro with 70 being the minimum measurement 
time, and f is the Fourier frequency offset from the carrier. 

The input parameters are expressed in terms of the spectral density of frequency 
fluctuations, S,(f). Conversion from phase noise to SJf) is simply 

f2 S,(f) = +,(f)+d 
YO 

where uo is the carrier frequency. 

You may choose to supply your own function Sv(f), or to use the functions which 
are built into the package. Use the parameter SELSY (see below) to communicate 
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this choice to  the package. If you use your own function, you must modify the empty 
FORTRAN function, SYF(f), within the package. The built in function has the form: 

The values of the C; are stored in array C. Parameters Cl through Cs specify the 
level of the five most commonly encountered random noise types found in oscillators, 
amplifiers, frequency multipliers, frequency synthesizers and general signal processing 
equipment. Parameters c6 through CS specify the level of (up to four) coherent bright 
lines in the frequency noise spectra. That is for i = 6,7,8,9, C; = YiMSi.  Here 

&(fm) = 1, for f = fm,  and 
6(fm) = 0, for f # fm. 

Note that YiMsi can also be expressed as #aMs;y where #RMS; is the RMS value of 
the phase modulation of Fourier frequency fm;. 

Servo analysis, such as the examination of the effect of various servo parameters on 
the locking of an oscillator to a frequency reference, is facilitated by choosing the 
appropriate form of K(f). The noise type assumed for the reference source via Clol is 
white frequency modulation. An example of this is given in the Appendix. In some 
special servo cases, it  may be necessary to divide S , ( f )  into two segments and run 
them as separate cases , or you can enter your own form for S,(f). 
The filter function K ( f )  must be chosen from the following four functions by setting 
the value of SELK (SELK=O, 1, 2 and 3 respectively). 

. o  

The coefficients Ki must be input in the array CK. 
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The upper cutoff frequency of the integral can be treated as infinitely sharp by setting 
fh equal to  the equivalent noise bandwidth of the time domain configuration simulated 
by the calculations, or it can be treated more realistically using the appropriate 
first-, second-, or third-order low-pass filter function. This option is implemented by 
choosing the appropriate constants for MI, Mz, and M3, and setting fh to a sufficiently 
large value that the termination of the integration at this value does not significantly 
bias the results. 

where any or all of the Mi can be 0. These Mi are stored in the CM array. 

This accommodates the most commonly encountered types of random noise found 
in oscillators, amplifiers, frequency multipliers, frequency synthesizers and general 
signal processing equipment. The rest of the parameters are described in the Input 
Parameter section, below. 

2 Running the Program 

The SIGINT package of routines is designed for interactive use. The user controls 
the code by answering questions which are displayed on the screen. The first of these 
questions asks whether to  run a new case or read output from a file. (Output to be 
read must have been written by SIGINT so if this is the first time you have run the 
code there will be no output available to read.) If you choose to read output from a 
file the code will ask for the file name, read in that entire file and then display the 
“output menu” (see below). If you choose to run a new case the package will display 
the values of the parameters that define the default case. It then presents a menu 
which asks whether you want to  run that case, be prompted to input an entire new 
set of parameters, or modify directly the current values of some parameters. This will 
be referred to later as the “input menu”. 
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2.1 Input Modes 

In either of the modes described below, values may be entered in either fixed- or 
floating-point format. If floating-point is used, the decimal point is necessary; for 
example, you can enter 2.e-3 but not 2e-3. In some cases, when an integer is being 
entered, the decimal point must be omitted. In all cases, the program recovers from 
incorrect input, outputs a message attempting to diagnose the problem, and allows 
re-entry of the value. 

2.1.1 The “prompting” input mode 

If you elect to be prompted for the values of the variables, the program will lead you 
through a series of questions and answers by which a new case will be defined. An 
advantage of this mode is that it is not necessary to know the names of the variables 
which the program uses. 

2.1.2 The “direct” input mode 

If, instead, the “direct” mode of input is chosen, values are changed by typing one 
or more lines containing variable names followed by “=” and the new values of the 
variable. Different entries can be separated by a comma or blanks. The last line must 
be terminated by a “$” or a ((;”. For example, you might type the following lines: 

NFLANGE=2, NLOW = 10 
SELSY=l CK=l . , 2 .  ,3. $ 

This mode will usually be faster than the ‘(prompting” mode. 

Notice that if you want to get out of this mode without changing anything, you can 
simply type a ‘($I’ or a ((;” . 
When you finish with either mode of input, the current set of parameters will be 
displayed and you will be returned to the input menu. At this point you can either 
run the case or further modify the parameters by again entering one of the input 
modes. You can continue to revise and examine the parameters until you are satisfied 
with them and then run the case. 
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2.2 Output Modes 

When the integration is completed or output has been read from a file, you will be 
presented with another menu which will be called the “output menu”. This menu asks 
whether to  print results, plot them, compute another integral, read output from a file 
or quit. As the program computes an integral, it saves the defining parameters and 
the results in internal data  structures. The results are in the form of a table of values 
of T (T =  TO) and corresponding values of the square root of the integral(variance). 
Any results you read from output files will be in the same form. So each time you 
come to the output menu, the results of all of the cases you have done (or read) 
during the run are available to be printed and/or plotted. If you choose any of the 
output modes, and if any of the cases you choose to output are moda, cases, you will 
be given the option of having those values converted to cr= values as they are output. 
The values in the internal arrays will remain unchanged. 

2.2.1 Printing 

On AT compatible computers you can either print on the screen or on your printer 
(see Portability section for behavior on other systems). Note that if you are working 
on a system that has no printer attached and you choose the printer option, it is 
likely that the system will hang up and you may lose your results. 

2.2.2 Plotting 

Plotting will work only on AT compatible computers. On each frame it is possible to  
plot either one or several cases. A hard copy of the plot can be obtained if you have 
a memory-resident utility that allows you to use the print screen key to  transfer the 
graphics screen image to  your printer. The plot package will plot directly to  certain 
printers. Examples of the plots are found in figures 1-9. Additional details can be 
obtained by contacting the Applied and Computational Mathematics Division of the 
Computing and Applied Mathematics Laboratory, NIST, 325 Broadway, Boulder, 
Colorado 80303-3328. Attention: Abbie O’Gallagher. 
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2.2.3 Quitting and Saving Results 

When you choose to quit, you will be asked if you want to save the results. If you say 
yes, you will be asked for the name of a file to contain these results. If a file exists 
under that name, you will be given a chance to choose another file name or write over 
the file. If there are moda, cases present, you will be asked whether to output them 
as a, cases. (Note that if you write cases out as o= you will not be able to recover 
the moda, values later.) Finally the defining parameters, along with the results of 
each of the cases you have done or read during that run, will be saved in a disk file 
on the default disk and directory under the name you have specified. The next time 
you run SIGINT you can read in this file and display those results. 

2.3 Input Parameters 

The following is a list of the input variables that must be set in order to compute 
an integral. The integral can be computed for a single value of -r (7 = n T O ) ,  or for a 
sequence of values of 7. In the latter case, the integral can be plotted as a function 
of 7. 

INTGRL: Integer which selects the integral to be computed. INTGRL = 1 for the 
0, integral; INTGRL = 2 for the moda, integral; INTGRL = 3 for the 
u, integral. The default value is INTGRL = 1. 

Integer which determines the range of values of the parameter n for 
which the integral is computed. Set NRANGE = 1 to compute the 
integral for a single value of n (n = NLOW). Set NRANGE = 2 to 
compute the integral for the sequence of values obtained by starting 
with NLOW and doubling the current value to obtain the next one until 
reaching the last such value not exceeding NHIGH. Thus if NRANGE 
= 2, NLOW = 1, and NHIGH = 20, then the integral will be computed 
for n=(1, 2 ,4 ,  8, 16). For NRANGE = 3, the integral will be evaluated 
by decades with five points per decade. Thus if NRANGE = 3, NLOW 
= 1, NHIGH = 100, then the evaluation will be done for n = (1, 2, 3, 
5 ,  7, 10, 20, 30, 50, 70, 100). The default value is NRANGE = 3. 

The lower limit of the range of values of n for which the integral is 

NRANGE: 

NLOW: 
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computed (see the discussion of NRANGE). The default value is NLOW 
- 1. - 

NHIGH: The upper limit of the range of values of n for which the integral is 
computed. The default value is NHIGH = 1000. 

FH: The upper limit, f h ,  of the integral. The default value is FH = 3. 

SELSY: Integer to select the function S,(f). If SELSY = 1, you must supply 
a double-precision function named SYF( f ) ,  with double-precision argu- 
ment f. (You must replace the empty FORTRAN function SYF(f) that 
is provided.) If SELSY = 2,  then you must select one of four built-in 
functions by giving values of the input parameter SELK, and the arrays 
C, CK, and CM as given in the discussion of SJf) above. The default 
value of SELSY is SELSY = 2. 

SELK: Integer parameter which selects the function K(f). See discussion above. 
The default value is SELK = 0. . 

C: A double-precision array of with 10 elements containing the coefficients 
of the function S,(f). The default values are C = 2.e-24, 0, 0, 0, 0, 0, 
0, 0, 0, 0. 

A double-precision array with 4 elements, FMs through FMg, specify- 
ing the modulation frequencies, fm;, corresponding to the sixth, sev- 
enth, eighth and ninth elements of the C array. The default values are 
O., O., O., 0. However note that if C; is nonzero, FM;  must be greater 
than zero. Also, for C; to contribute to  results, F M ;  must be less than 
FH. 

FM: 

CK: A double-precision array with 3 elements containing the coefficients of 
the function K(f). The default values are CK = 10, 40, 100. Note, 
however, that these values do not figure in the calculation when SELK 
has it’s default value of 0. 

CM: A double-precision array with 3 elements containing the coefficients of 
the function M(f). The default values are CM = 0 ,0, 0. 

A double-precision scalar parameter of the integral. The default value 
is TAUO = 1. 

TAUO: 
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2.4 Internal Constants 

It is not necessary to be aware of the constants described in this section unless you 
want to alter the behavior of the code. In that case it may be necessary to change the 
values to which these constants are set. This may be done by editing the FORTRAN 
to change the assignment statements that set these values. Recompiling will also be 
necessary. The  pertinent assignment statements can be found at the beginning of the 
main program. 

EPSREL: The relative error tolerance for QUADPACK routines. It is set at 
2 * 10-3. 

EPSTRN: The truncation error tolerance used by the MDSIGY routine to deter- 
mine, for a given value of the variable of integration, whether the esti- 
mate of the integral over the remainder of the interval is small enough 
to indicate that the remainder can be ignored. See discussion of the 
numerical method, below. EPSTRN is set a t  2 * lo-'. 

NCYCLE: The number of cycles of the numerator of Su(f) on each side of a sin- 
gularity which are evaluated by the non-oscillatory quadrature routine 
(see section 3). NCYCLE is set to 7.1. 

Switch to control debug printout from the routines SIGMAY and MD- 
SIGY. It is set to 0. Set it to  1 to  get debug printing. 

IDB: 

3 The Numerical Method 

The sigma-y integral, 

can be treated as an oscillatory integral except in the neighborhood of the origin. 
Therefore, the integral is computed by using one approximation in the neighborhood 
of the origin and a second method away from the origin. The bright line terms, 
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those which involve the coefficients C g  through C g ,  can be calculated directly. In the 
following discussion, then, let 

Then 

where 

and 

M(f) and K(f) are as described in the introduction. CY is chosen so that the first 
integral is taken over NCYCLE/2 cycles of the sine function, provided T = n T 0  

is large enough. Otherwise it is taken over 2/3 of the interval fh. That is, CY = 
minimzcm(2fh/3,NCYCLE/~). If the function PI grows more slowly than f e 3  at 
f = 0, then the first integral exists. We assume that  SJf) grows no more rapidly 
than fe2 ,  and thus the integrand in this first integral has a removable singularity and 
can be computed using a general purpose quadrature routine from the subroutine 
library. We use the DQAGE routine from the QUADPACK [7] library. 

The second integral is oscillatory. It can be transformed into a canonical form by use 
of the trigonometric substitution, 

1 
8 

cos(2Tf.r) + - cos(4nf7)) 
3 1  

sin4(rj7) = - - - 
8 2  
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and can therefore be written as the sum of three integrals, 

1 2  = 121 + 1 2 2  + 123. 

Since CY is chosen large enough to avoid the singularity at the origin, the first of 
these three integrals can be computed with the standard quadrature routine DQAGE. 
The remaining two integrals are oscillatory and are therefore computed using the 
DQAWOE routine, also from QUADPACK. DQAWOE is designed for integrals of 
the form J f(z)sin(wz)dz or Jf(z)cos(wz)dz ,where w can be very large. These 
sigma integrals may have values of 7 ~ ~ 0  which easily exceed l o 4  (here n T 0  corresponds 
to w).  

In all cases we ask that the QUADPACK routines compute the integrals with a 
relative error less than 2 * This may be wasteful, since one of these integrals 
may dominate the remainder, however we could not be certain of the dominance in 
all cases. 

Extensive tests of the numerical calculation for ~ ~ ( 7 )  have been performed for all the 
common noise types, C1 - CS [l, 2, 31. The results agree with the asymptotic form 
( 2 n f h 7  >> 1) to better than 11% as long as 27rfh7 is larger than 6.3 and 0.1% for 
2n f h ~  2 62.8. We believe that the numerical technique yields more accurate results 
since the analytical calculations are valid only for 27rfh7 >> 1. The asymptotic forms 
are considered in more detail in Figures 1-7 and Tables I and 11. 

The mod sigma-y integral, 
_- 

is much more difficult to  approximate because the sum over k includes many terms 
when n is large. The sum over k is eliminated by using the following identity, 

n 1 sin’? n-1 

x ( n - k ) c o s B k  = --+-- 
k=l 2 2 sin2! e 

This identity is derived by summing a geometric series composed of complex expo- 
nentials. Since the real part of a complex exponential is the cosine term, this series 
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reduces to the expression on the left, above. This can be summed explicitly, yielding 
the final formula. Application of this identity to the original integral leads to the 
following form of the integral: 

moda,(n.ro) = [ - n4f2T: ifh Su(f) sin6(.lr7On f) df] '  . 
f 1 sin2(.lr.r0f) 

With this simplification moda,(n.ro) can be broken up and evaluated in a way that 
is analogous to that described above for the C Y , , ( ~ T ~ )  integral. However moda,(n.ro) 
presents the additional problem that it has a singularity for each integral value of 
70  f instead of just one singularity at f = 0. It is therefore necessary to break up the 
interval of integration into f h  *TO subintervals and sum the values of the integral over 
each of these smaller intervals. If f h  is large, this is a large number of subintervals. But 
in many cases, the later subintervals contribute negligibly to the value of the integral. 
For this reason an estimate of the error produced by neglecting these contributions 
is made every few subintervals. If the ratio of this error to the computed value of the 
integral up to that point is small (less than EP.STRN), then no further calculation is 
done and the value returned by the program as'moda,(n.r0) is the square root of the 
sum of the integrations done over the subintervals up to that point. 

As in the CY,, case, the bright line terms (those which involve the coefficients Cs through 
C9) are calculated directly. So, in fact, the integral becomes: 

with M(f) and K(f) as described in the introduction. 

Extensive tests of the numerical calculation for modu,(.r) have been carried out for 
the common types of noise (C, - C5) and compared to  the results of [3], obtained 
analytically and the results of [4] obtained by computer simulated noise. This has been 
done by comparing R(n) the ratio of modCYi(.r) to CY;(.) as a function of the number of 
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samples averaged together for moday(T), obtained by the three methods. The results 
obtained using SIGINT for R(n) are shown in figure 1 and table 1. This agrees exactly 
with the results of both [3] and [4] for a = -2, a = 0 and a = 2 (ignoring the obvious 
typographical errors). The results for CY = 1 agree for 2 7 r f h ~ ~  = lo4 - the only case 
addressed by 131. Also shown are our results for a = 1 and 2 7 r f h ~ ~  = 3, 10, 100. Our 
results differ considerably from [3] for a = -1, but agree with the asymptotic value 
of [4]. Since we have obtained excellent agreement for so many other cases using the 
same numerical code, we believe that the results presented in figure 1 and table 1 are 
more accurate than the earlier work. 

4 Portability 

The SIGINT code is standard FORTRAN 77 and is portable with the following ex- 
cept ions: 

0 The graphics library used is David Kahaner’s’ GRAPH.LIB, which runs only 
on AT-compatible computers with one of the following display adapters: 

- AT-compatible Color Graphics Adapter’ 

- AT-compatible Enhanced Graphics Adapter 

- AT-compatible Professional Graphics Adapter in CGA emulation mode 

- AT-compatible PS/2 Video Gate Array in EGA emulation mode 

- Hercules 

- Video-7 

When moving the code to another system, it will be necessary either to “com- 
ment out” the calls to the plot routines and run the code without graphic output 
or to change those graphics calls, all of which are in SUBROUTINE PLOT, to 
call an available graphics library. 

‘Scientific Computing Division, National Institute of Standards and Technology, Gaithersburg, 
MD 20899 

21dentification of some commercia materials has been necessary in this report. In no case does 
such identification imply recommendation or endorsement by the National Institute of Standards and 
Technology, nor does it imply that the materials are necessarily the best available for the purpose. 
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0 On any system, numerical results can be printed on the screen but if the option 
of using the printer is chosen on a system other than an AT compatible, the 
results will instead be written to a file called “PRN”. (“PRN” is the name DOS 
uses for the printer.) Results will not accumulate in this file. Only the last 
printing will be there when the program terminates. 

0 The code is written in double precision, which may be unnecessary on machines 
with larger word sizes. 

0 On UNIX systems, carriage control characters may appear on the screen instead 
of affecting the output as intended. 

0 The VAX reports underflow conditions but terminates normally and the results 
are unaffected. 

The entire code has been run extensively on AT-compatible computers using RM/FOR- 
TRAN. In addition, except for the graphic output, it has been tested on a VAX 
11/785, SUN 3/180, MASSCOMP MC5500-PEPJ and Cyber 840 and 855. It is ex- 
pected that it will run on most other systems. If problems are encountered in moving 
it to another system, an attempt will be made, subject to the availability of resources, 
to  overcome them. For such assistance, please contact the Applied and Computa- 
tional Mathematics Division, NIST, 325 Broadway, Boulder, Colorado 80303-3328. 
Attention: Abbie O’Gallagher. 
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Figure 1: gY(-r) versus T for the five common power-law noise types in the 
limit that 27~fh7 is large compared to 1 and an  infinitely sharp filter is used. 
Curve a is for random-walk frequency modulation, S,(f) = h-2f-2. Curve 
b is for flicker frequency modulation, S,(f) = h-1f-I. Curve c is for white 
frequency modulation, S,(f) = ho. Curve d is for flicker phase modulation, 
S,(f) = hlf and fh = 16 Ha. Curve e is for white phase modulation, 
Sdf) = h2f and fh = 16 Hz. hz = hl = ho = h-1 = h-2 = 2x10-24 
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Figure 2: ~ ~ ( 7 )  for white phase modulation (a = 2 and h2 = 2 ~ l O - ~ ~ )  as a 
function of measurement time, T, and measurement bandwidth, fh. Curves 
a, b, and c have an infinitely sharp filter with width, fh = 16 Hz, fh = 0.016 
Hz, fh = 0.0016 Hz respectively. Curves d and e have a single pole filter 
width, fh = 0.016 Hz and fh = 0.0016 respectively. 
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Figure 3: aY(7) for flicker phase frequency modulation (a = 1 and hl = 
2 ~ l O - ~ ~ )  as a function of measurement time, r ,  and measurement bandwidth, 
fh. Curves a, b and c have an infinitely sharp filter with width, fh = 16 Hz, 
fh = 0.016 Hz, fh = 0.0016 Hz respectively. Curves d and e have a single 
pole filter width, f h  = 0.016 Hz and fh = 0.0016 respectively. 
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Figure 4: C T ~ ( T )  for white frequency modulation (cy = 0 and ho = 2 ~ l O - * ~ )  as 
a function of measurement time, T ,  and measurement bandwidth, f h .  Curves 
a, b and c have an infinitely sharp filter with width, f h  = 16 Hz, f h  = 0.016 
Hz, f h  = 0.0016 Hz respectively. Curves d and e have a single pole filter 
width, f h  = 0.016 Hz and fh = 0.0016 respectively. 
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Figure 5: ~ ~ ( 7 )  for flicker frequency modulation (a = -1 and bel = 2 ~ l O - ~ ~ )  
as a function of measurement time, T ,  and measurement bandwidth, fh. 
Curves a, b and c have an infinitely sharp filter with width, fh = 16 Hz, 
fh  = 0.016 Hz, fh = 0.0016 Hz respectively. Curves d and e have a single 
pole filter width, fh = 0.016 Hz and fh = 0.0016 respectively. 

19 



. .  

l.E-egF- 

1. E-13 

F 
R 
A 
C 

i- 
R 
E 
Q 

i 
T 
A 
B 
I 
L 
I 
1 
Y 

I I I I I I I I  I I 1 1 1 1 ~ ~  I I I I I I I I  

. .  . .  . . . . . . . .  

Figure 6: av(7) for random-walk frequency modulation (a = -2 and h-z = 
~ z C ~ O - ~ ~ )  as a function of measurement time and measurement bandwidth, 
fh for x .  Curves a, b and c have an infinitely sharp filter with width, fh = 16 
Hz, fh = 0.016 Hz, fh = 0.0016 Hz respectively. Curves d and e have a single 
pole filter width, fh = 0.016 Hz and fh = 0.0016 respectively. 
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Figure 7: Ratio of o ~ ( T )  to modni(tav) as a function of n, the number of 
points averaged to obtain moda,(tau). The measurement time T = n ~ o ,  
where 70 is the minimum data interval. 
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Figure 8: Curve a shows a,(n~0) for white phase modulation (cy = 2, hz = 
2 ~ l O - * ~ ,  fh = 16 Hz and coherent frequency modulation c6 = YiMS = 
at a frequency of fms = 6 Hz. Curve b shows a,(n~0) for the same noise 
parameters as curve a with c6 = 0. The integrals were evaluated at  n = 1, 
2, 3, 5, 7, 10, 20, ... 10,000 and .r0 = 0.008 ms. 
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Figure 9: Curve a showis mod a,(n~0) for white phase modulation (a = 
2, h2 = 2 ~ l O - ~ ~ , f h  = 16 Hz and coherent frequency modulation c6 = 
YiMS = at a frequency of fm6 = 6 Hz. Curve b shows mod a,(n.ro) 
for the same noise parameters as curve a and c6 = 0. The integrals were 
evaluated at n = 1, 2, 3, 5 ,  7, 10, 20, ... 10,000 and TO = 0.008 ms. 
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TABLE 1 Ratio of modCi(7) to o,’(T)  versus n in the limit that WhTO > 1 , for 
common power-law noise types Sy(f) = h a f a .  n is the number of time 
or phase samples averaged to obtain modo,2(1. = where 70 is t h e  
minimum sample time, and W h  is 2ir times the measurement bandwidth  

1 1.000 

2 0.859 

3 0 .840 

4 0.811 

5 0.810 

6 0.828 

7 0.827 

6 0.827 

10 0.826 

14 0.826 

20 0.825 

30 0.825 

50 0.825 

100 0.825 

L i m i t  0.825 

1.000 

0.738 

0.701 

0.681 

0.684 

0 .681 

0.679 

0.678 

0.677 

0.675 

0.675 

0.675 

0.675 

0.675 

0.675 

1.000 

0.616 

0.551 

0.530 

0.517 

0.514 

0.507 

0.506 

0.506 

0.502 

0.501 

0.500 

0.500 

0.500 

0.500 

1.000 

0 . 5 6 8  

0 . 4 8 1  

0.405 

0.386 

0.  149 

0 .143 

0.319 

0.299 

0 . 2 7 G  

0.251 

0.211 

0.210 

0.186 

1 .ooo 
0 . 5 4 3  

0.018 

0.159 

0.124 

0.101 

0.283 

0.271 

0 . 2 5 1  

0.210 

0.210 

0.194 

0.176 

0.159 

1.000 

0.525 

0.364 

0.317 

0.279 

0.251 

0.235 

0.219 

0.203 

0.179 

0.161 

0 . w  

0.134 
0.121 

1.000 

0.504 

0.355 

0.284 

0.241 

0.214 

0.195 

0.180 

0.160 

0.117 

0.119 

0.106 

0.0918 

0.0817 

3 . 3 7  - [ 1.04 +I  h+,) - 

1.000 

0.500 

0 .330  

0.250 

0.200 

0.167 

0.143 

0.125 

0.100 

0.0714 

0.0500 

0.0133 

0.0200 

0.0100 
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TABLE 2 Asymptotic forms of O ; ( T )  for various power-law noise types and two 
filter types. Note: w h / 2 x  = fh is the measurement system bandwidth 
- often called the high-frequency cutoff. In = log, .  

N a m e  o f  Noise a S , ( f )  0; ( r )  

'3h r > > l  '3h r>>l  u,, r<<t * r < < l  
I n f i n i t e  Sharp S ing le  Pole  I n f i n i t e  Sharp Single Pole 

F i l t e r  F i l t e r  F i l t e r  F l l t e r  

(1 .038 + 31n(i+r))hl ( 3 l n ( q , r ) ) h 1  h Z f h ' r 2 h I  2 f h 2 ( l n ( 2 ) ) h ,  
F l i c k e r  Phase 1 h , f  

( 2 ~ ) ~ r '  

h0 2/3x2 f,' r'h, 2/3n2 f h 2  rho - h0 - m i t e  Frequency 0 ha 
2r  2r  

2(ln(2))h-, 2( l n ( 2 ) ) h - ,  x ' fh2 r2h-  I 8x2f, ' rZh- 1 F l i c k e r  Frequency -1 h- , f -  ' 
2r2  rh. 2n' rh-l  2n2f,r2h.,  2 ~ ' f , r ~ h - z  

-2 h - l f - '  Random-Walk 3 3 
Frequency 
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Appendix 
Stability of Frequency Locked Loops 

Fred L. Walls 
National Institute of Standards and Technology 

Boulder, Colorado 80303 

1. Introduction 

Passive frequency standards are characterized by the use of a reference 
resonance to stabilize the frequency of an external probe oscillator. A 
common configuration is shown in Fig. 1 [l-61. The probe oscillator 
generally has phase modulation imposed on the carrier in order to 
interrogate the resonance with a minimum of offset. The resulting 
amplitude modulation is demodulated to yield an error curve that is 
essentially the derivative of the resonance. Although Fig. 1 shows a 
transmission system, similar schemes are sometimes possible in reflection 
[ 5 ] .  The error signal from the demodulator is used to steer the probe 
signal toward the center of the resonance line [l-91. For analysis times 
longer than one period of the modulation cycle, and under the condition 
that the probe oscillator wanders less than the half width of the error 
curve in the loop attack time, we can treat this curve as approximately 
static[l-41. Near line center the loop error voltage V, at the 
synchronous detector, is approximately V, = k ( v o o  - vR) + V, where k is 
the slope of the error curve, vR is the’. resonance frequency of the 
reference, and y o o  is the open loop frequency of the probe oscillator and 
V, is the detector noise. If we now close the l o o p  with gain G(f), it 
can be shown that the spectral density of fractional frequency 
fluctuations S,(f) for the probe source becomes 

MODULATION 
REF 

OUTPUT 

SYNCHRONOUS 
DETECTOR 

I 
PRE 

FILTER 
PHASE 

MODULATOR 

I REFERENCE 
RESONANCE 

POST 
FILTER 

Figure 1. Generalized block diagram of a probe source locked to a 
reference resonance. 

Contribution of the U.S. Government; not subject to copyright. 
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where S y ” ( f )  is the open-loop spectral density of fractional frequency 
fluctuations of the probe source, Sp(f) is that of the reference, and 
SyN(f) is that of the detector and interrogation noise referred to the 
demodulator output. Cutler [lo] has pointed out that noise in the local 
oscillator at the 2nd harmonic of the modulation frequency, which is 
usually ignored, causes a time varying frequency offset that is 
undistinguishable from reference noise. This sets the lower limit to the 
interrogation noise and often sets the lower limit of the noise 
performance of the local oscillator necessary not to degrade the overall 
performance. The magnitude of the 2nd harmonic noise modulation in 
radians/s is estimated in appendix B of [ 11 to be k, = 27rv( S, ( n / i ~ ) ) ” ~  , 
where n / ( 2 x )  is the modulation frequency. This leads to an interrogatic-. 
noise term which is of order [1,4,10] SyN(f) = 1/ (16x)  Syo(n/n). For 
large values of G(f), Sy(f) of the probe source reflects that of the 
reference plus the added noise of the detection system [ l - 6 ) .  

The primary goal of this paper is to investigate the effect of various 
realistic forms of G(f) on the spectral density of frequency and 
fractional-frequency stability. It will be shown that mod a , ( r )  (11,121 
is better suited than the traditional two-sample or Allan Variance u y ( r )  
[ 8 1 ,  for evaluating the locked performance when the frequency stability 
of the reference is much greater than that of the local oscillator 
[7,8,11,12]. 

2. The Effect of Different Forms of Servo Gain 

Figure 2 shows the effect of locking a probe source with S y o ( f )  = 2 x 
10-28/f2 + 1 x 10-24/f + 2 x 10-30f2 (which roughly corresponds to that 
of a low-noise 5 MHz quartz oscillator) to a reference resonance with 
SyR(f) of 2 x S Y N ( f )  is the estimated 
interrogation noise for a modulation frequency of 47 Hz [1,4,10]. Curves 
A ,  B, and C show the effect of using a first-, second-, or third- order 
l o o p  each having a loop bandwidth of approximately 0.1 Hz or an attack 
time of 1.6 s [ l ] .  The solid Curves A ,  B, and C of Fig. 3 show u y ( r )  
calculated for curves A, B, and C from Fig. 2 with a noise bandwidth of 3 
Hz. The improvement in stability of the local  oscillator due to the 
servo scales roughly as 7/r0 where T~ is the attack time and 7 is the 
measurement time. Considerable insight into the effect of various gain 
stages on the frequency stability can be obtained by considering 

and syN(f) = 5 . 6  x 
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, . .. 

as a measure of fractional time or frequency stability in the region of 
measurement times from about 1 to los s where the effects of low 
frequency divergence can often be ignored [ 7 , 8 ] .  The squared phase 
deviation of the zero crossings is given approximately by[8] 

._  -. . : s;(q =2x10- 30 

lo-’ 1 

Figure 2 .  S,(f) of the 
probe source locked a 
reference resonance. For A 
G(f) = (l/(lOf), for B G ( f )  

for C G ( f )  = 1/(10f)) (1 + 
1/(40f))(l + 1/(160f)). 
= (1/(1of))(l + 1/(40f)), 
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Figure 3. The solid 
curves show a , ( r )  and the 
dashed curves show mod 
o y ( r )  versus 7 for curves 
A ,  B, and C of Fig. 2. 
The a, b, and c points 
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o , ( r )  using Eqs. 2 and 3 
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MEASUREMENT TIME (S) 

for a sample time r and noise bandwidth f,. For a noise spectrum which 
varies as Sy(f)= K ’ P  where n > 2, the integral is dominated by the high 
frequency bandwidth even for very long measurement times. The 
fractional-frequency (or time) stability given by Eq. 2 decreases as r - ’  
just as does oy(7) ,  due to the increase in measurement time and not to a 
decrease in the value of A d 2 .  The integral in Eq. 3 can be integrated by 
parts for the various segments of Sy(f). This makes it easier to 
evaluate and optimize the performance of the overall system than by using 
a process based on oy ( 7 ) .  

The contribution of the high-frequency noise can be greatly reduced by 
phase averaging the data points[9]. The data at measurement time 7 = nr, 
(where r 0  is the data interval) is obtained by averaging the n adjacent 
phase points. This is equivalent to using mod o y ( r )  to analyze the 
data[9,11,12]. The standard expression for mod a y ( r )  contains an 
enormous number of terms and is quite laborious to compute[ll-121. It 
(13-151 has been pointed out that mod o y ( r )  can be reduced to 

which is much more manageable. Nevertheless it still requires numerical 
calculations to determine which segment of the phase noise dominates the 
integral. We can estimate mod a y ( r )  from Eqs. 2 and 3 by using fh = 
fho/n, where fh, is the hardware bandwidth of the measurement system and 

29 



T = nr, is the measurement time. The integral for A$' in Eq. 3 is now 
substantially reduced for measurement times large enough that fho/n is 
less than the bandwidth of the servo system. This is in contrast to the 
original calculation for Eq. 3 where the integral must always increase 
with r .  This integral can also be divided into parts and integrated 
analytically. The fractional frequency stability computed for A, B, and 
C of Fig. 2 using mod u y ( r )  are shown as the dashed cumes A', B', and C' 
of Fig. 3 .  The points labeled a, b, c show the results of estimating mod 
u y ( r )  using Eqs. 2 and 3 with f h  = fho/n. The agreement with the dashed 
curves is very good. The calculations for a , ( r )  and mod u y ( r )  are 
virtually independent of using an upper cutoff frequency for the 
integration or a simple low pass filter of the same bandwidth. The use 
of mod u y ( r )  reduces by a factor of about 100 the time necessary to reach 
the performance of the reference plus the interrogation noise, which in 
this case limits the performance for times longer than 100 s .  

3 .  Discussion 

The primary utility of these results is the insight into the origin of 
the major contributions to a , ( r )  and mod a , ( r )  as a function of the servo 
gain and the analysis bandwidth, and the effect of narrowing the 
bandwidth with longer measurement times. The specific examples 
illustrate that it is generally necessary t o  use a second-order loop to 
lock the probe source to the reference resonance, but that a third-order 
l o o p  offers little additional improvement when drift in the probe is not 
serious. In addition, if the reference resonance is substantially more 
stable than the probe source, it can be very useful to use mod u y ( 7 )  to 
analyze the output of the probe source. We have introduced a simple 
measure of frequency stability that is easy to use for optimizing the 
servo and the analysis system. With the techniques introduced here it is 
possible to realize fractional frequency stabilities and time prediction 
of the local oscillator which are characteristic of the reference 
resonance in a way that is orders of magnitude faster than those using 
more traditional approaches. 
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